A single-step strategy for general construction of metal sub-nanoclusters on graphdiyne

Author:

Xiong Huatian,Zou Haiyuan,Rong Weifeng,Wang Yongsong,Dai Hao,Ji Yongfei,Duan LeleORCID

Abstract

Abstract Metal sub-nanoclusters (SNCs) inherit the metrics of unsaturated active sites and ultrahigh metal utilization from single-atom catalysts (SACs), and they can drive the reactions involving multiple adsorbates by their enriched metal cofactors that beyond SACs. However, the current synthetic strategy offers limited versatility to prepare SNCs due to their subnanometric feature and high active surface. Herein, we demonstrate a universal and facile one-pot reaction to construct wide assortments of metal SNCs with the size of 2 to 3 nm on graphdiyne (GDY), denoted as M-SNCs/GDY (M = Co, Ni, Cu, Ag, Pd, Rh, Au, Ir, and Pt). Systematic investigations reveal that the correlated metal SNCs formation undergone the nucleation and growth process, during which the metal single-atoms were first anchored and then served as nuclei to grow SNCs confined on GDY. The electrochemical CO2 reduction reaction (eCO2RR) catalyzed by Cu-SNC/GDY and a Cu single-atom catalyst on GDY (Cu-SAC/GDY) was investigated to demonstrate the advantages of SNCs over SACs in manipulating the multicomponent reaction. Cu-SNC/GDY exhibited promoted Faradic efficiency (FE) of carbon products and suppressed competing hydrogen evolution reaction compared to the Cu-SAC/GDY. Benefiting from the function of multiple active centers, a C2+ FE of 31.6% was achieved over the Cu-SNC/GDY at −0.7 V versus reversible hydrogen electrode, which is 11-fold higher than that of Cu-SAC/GDY. In situ infrared spectroelectrochemistry confirmed that Cu-SNC/GDY could adsorb more eCO2RR intermediates over Cu-SAC/GDY. This study delivers a single-step strategy for preparing metal SNCs on GDY and expands the scope of SNCs.

Funder

Shenzhen R&D Fund

Educational Commission of Guangdong Province

National Natural Science Foundation of China

Stable Support Plan Program of Shenzhen Natural Science Fund

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3