Halogen Tailoring of Platinum Electrocatalyst with High CO Tolerance for Methanol Oxidation Reaction

Author:

Hui Lan12,Yan Dengxin3,Zhang Xueting12,Wu Han12,Li Jinze12,Li Yuliang12ORCID

Affiliation:

1. CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China

2. University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. Laboratory for Chemical Technology Ghent University Technologiepark 125 9052 Gent Belgium

Abstract

AbstractThe catalytic activity of platinum for CO oxidation depends on the interaction of electron donation and back‐donation at the platinum center. Here we demonstrate that the platinum bromine nanoparticles with electron‐rich properties on bromine bonded with sp‐C in graphdiyne (PtBr NPs/Br‐GDY), which is formed by bromine ligand and constitutes an electrocatalyst with a high CO‐resistant for methanol oxidation reaction (MOR). The catalyst showed peak mass activity for MOR as high as 10.4 A mgPt−1, which is 20.8 times higher than the 20 % Pt/C. The catalyst also showed robust long‐term stability with slight current density decay after 100 hours at 35 mA cm−2. Structural characterization, experimental, and theoretical studies show that the electron donation from bromine makes the surface of platinum catalysts highly electron‐rich, and can strengthen the adsorption of CO as well as enhance π back‐donation of Pt to weaken the C−O bond to facilitate CO electrooxidation and enhance catalytic performance during MOR. The results highlight the importance of electron‐rich structure among active sites in Pt‐halogen catalysts and provide detailed insights into the new mechanism of CO electrooxidation to overcome CO poisoning at the Pt center on an orbital level.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3