Abstract
Abstract
In this letter, we propose a mechanism to control the magnetic properties of topological quantum material (TQM) by using magnetoelectric coupling: this mechanism uses a heterostructure of TQM with two-dimensional (2D) ferroelectric material, which can dynamically control the magnetic order by changing the polarization of the ferroelectric material and induce possible topological phase transitions. This concept is demonstrated using the example of the bilayer MnBi2Te4 on ferroelectric In2Se3 or In2Te3, where the polarization direction of the 2D ferroelectrics determines the interfacial band alignment and consequently the direction of the charge transfer. This charge transfer, in turn, enhances the stability of the ferromagnetic state of MnBi2Te4 and leads to a possible topological phase transition between the quantum anomalous Hall (QAH) effect and the zero plateau QAH. Our work provides a route to dynamically alter the magnetic ordering of TQMs and could lead to the discovery of new multifunctional topological heterostructures.
Funder
Oak Ridge Leadership Computing Facility
Office of Science
US Department of Energy
the U.S. Department of Energy (DOE), Office of Science, National Quantum Information Science Research Centers, Quantum Science Center
the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
National Energy Research Scientific Computing Center
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献