Magnetic Weyl semimetal phase in a Kagomé crystal

Author:

Liu D. F.12ORCID,Liang A. J.234ORCID,Liu E. K.56ORCID,Xu Q. N.5ORCID,Li Y. W.7ORCID,Chen C.237ORCID,Pei D.7,Shi W. J.2ORCID,Mo S. K.4ORCID,Dudin P.8ORCID,Kim T.8ORCID,Cacho C.8ORCID,Li G.23ORCID,Sun Y.5ORCID,Yang L. X.9ORCID,Liu Z. K.23,Parkin S. S. P.1ORCID,Felser C.51011ORCID,Chen Y. L.2379ORCID

Affiliation:

1. Max Planck Institute of Microstructure Physics, Halle 06120, Germany.

2. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.

3. ShanghaiTech Laboratory for Topological Physics, Shanghai 200031, China.

4. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

5. Max Planck Institute for Chemical Physics of Solids, Dresden D-01187, Germany.

6. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

7. Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK.

8. Diamond Light Source, Didcot OX11 0DE, UK.

9. State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics and Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing 100084, China.

10. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

11. Department of Physics, Harvard University, Cambridge, MA 02138, USA.

Abstract

Magnetic Weyl semimetals Weyl semimetals (WSMs)—materials that host exotic quasiparticles called Weyl fermions—must break either spatial inversion or time-reversal symmetry. A number of WSMs that break inversion symmetry have been identified, but showing unambiguously that a material is a time-reversal-breaking WSM is tricky. Three groups now provide spectroscopic evidence for this latter state in magnetic materials (see the Perspective by da Silva Neto). Belopolski et al. probed the material Co 2 MnGa using angle-resolved photoemission spectroscopy, revealing exotic drumhead surface states. Using the same technique, Liu et al. studied the material Co 3 Sn 2 S 2 , which was complemented by the scanning tunneling spectroscopy measurements of Morali et al. These magnetic WSM states provide an ideal setting for exotic transport effects. Science , this issue p. 1278 , p. 1282 , p. 1286 ; see also p. 1248

Funder

National Natural Science Foundation of China

Tsinghua University Initiative Scientific Research Program

Shanghai Municipal Science and Technology Major Project

Wurzbug-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter - ct. Qmat

Alexander von Humboldt Foundation for Postdoctoral Researchers

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3