Abstract
Abstract
The future scaling of semiconductor devices can be continued only by the development of novel nanofabrication techniques and atomically thin transistor channels. Here we demonstrate ultra-scaled MoS2 field-effect transistors (FETs) realized by a shadow evaporation method which does not require nanofabrication. The method enables large-scale fabrication of MoS2 FETs with fully gated ∼10 nm long channels. The realized ultra-scaled MoS2 FETs exhibit very small hysteresis of current–voltage characteristics, high drain currents up to ∼560 A m−1, very good drain current saturation for such ultra-short devices, subthreshold swing of ∼120 mV dec−1, and drain current on/off ratio of ∼106 in air ambient. The fabricated ultra-scaled MoS2 FETs are also used to realize logic gates in n-type depletion-load technology. The inverters exhibit a voltage gain of ∼50 at a power supply voltage of only 1.5 V and are capable of in/out signal matching.
Funder
H2020 Graphene Flagship Core 2
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献