Encapsulating chalcogens as the rate accelerator into MoS2 with expanded interlayer spacing to boost the capacity and cyclic stability of Li–S batteries

Author:

Lakshmi K C Seetha,Vedhanarayanan Balaraman,Shen Hsin-Hui,Lin Tsung-WuORCID

Abstract

Abstract In this work, we have demonstrated the successful incorporation of selenium (Se)/tellurium (Te) into the covalently functionalized MoS2 (B-M) nanosheets as a host using a facile solvothermal method. The chalcogen-loaded composites (Se/Te@B-M-C) are characterized by various spectroscopic and microscopic analyses. These experiments prove that the amorphous Se/Te additive is homogeneously distributed over the MoS2 nanosheets with an expanded interlayer distance of ∼10 Å. The fabricated Li–S batteries composed of the Se/Te@B-M-C cathodes exhibit superior electrochemical performances when compared to that of the pristine chalcogens and bare host. The improved charge storage characteristics of these hybrids are attributed to the uniform distribution of chalcogens as the rate accelerators and the formation of a protective solid-electrolyte interphase layer over composites. The present study demonstrates that the structurally-engineered MoS2-based composites with evenly distributed amorphous Se (or Te) chalcogens as accelerators are potential candidates for next-generation high-performance lithium–sulfur batteries with high capacity and excellent cycle stability.

Funder

Ministry of Science and Technology, Taiwan

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3