The Impact of Oxygen Content in O‐Doped MoS2 on the Kinetics of Polysulfide Conversion in Li–S Batteries

Author:

Ren Xuan1,Wu Haiwei1ORCID,Guo Yanbo1,Wei Hairu1,Wu Haoteng1,Wang Huan1,Lin Zhihua23,Xiong Chuanyin1,Liu Hanbin1,Zhang Lin23ORCID,Li Zhijian1

Affiliation:

1. Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development College of Bioresources Chemical and Materials Engineering Shaanxi University of Science &Technology Xi'an 710021 P. R. China

2. Laboratory of Nano and Quantum Engineering (LNQE) Leibniz University Hannover 30167 Hannover Germany

3. Institute of Solid State Physics Leibniz University Hannover 30167 Hannover Germany

Abstract

AbstractPolysulfide shuttle and sluggish sulfur redox kinetics remain key challenges in lithium–sulfur batteries. Previous researches have shown that introducing oxygen into transition metal sulfides helps to capture polysulfides and enhance their conversion kinetics. Based on this, further investigations are conducted to explore the impact of oxygen doping levels on the physical‐chemical properties and electrocatalytic performance of MoS2. The findings reveal that MoS2 doped with high‐content oxygen exhibits enhanced conductivity and polysulfides conversion kinetics compared to MoS2 with low‐content oxygen doping, which can be attributed to the alteration of crystal structure from 2H‐phase to the 1T‐phase, the introduction of increased Li–O interactions, and the effect of defects resulting from high‐oxygen doping. Consequently, the lithium–sulfur batteries using high‐oxygen doped MoS2 as a catalyst deliver a high discharge capacity of 1015 mAh g−1 at 0.25C and maintain 78.5% capacity after 300 more cycles. Specifically, lithium–sulfur batteries employing paper‐based electrodedemonstrate an areal capacity of 3.91 mAh cm−2 at 0.15C, even with sulfur loading of 4.1 mg cm−2 and electrolyte of 6.7 µL mg−1. These results indicate that oxygen doping levels can modify the properties of MoS2, and high‐oxygen doped MoS2 shows promise as an efficient catalyst for lithium–sulfur batteries.

Funder

State Key Laboratory of Pulp and Paper Engineering

South China University of Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3