Effects of intercalated water on the lubricity of sliding layers under load: a theoretical investigation on MoS2

Author:

Stella MartinaORCID,Lorenz Christian DORCID,Clelia Righi MariaORCID

Abstract

Abstract Two-dimensional (2D) materials, such as graphene and molybdenum disulfide (MoS2) have recently become some of the most studied nano-materials due to their wide array of technological and industrial applications. Among these, they display great potential as solid lubricants. Friction properties of 2D-materials, however, are very sensitive to environmental conditions, e.g. humidity. In MoS2, for instance, humidity can hamper its tribologic performances. Past experiments and recent ab-initio molecular dynamics simulations have highlighted that, at ordinary temperatures, a possible reason for lower lubricity is the physical interaction of water with the layers. It is, therefore, crucial to better understand the microscopic mechanisms underlying this behaviour, in order to optimise the lubrication performance of these materials. In this paper we used density functional theory simulations and classical molecular dynamics simulations to provide a multi-scale description of how external load affects the energetic, structural and dynamic properties of intercalated water between MoS2 layers. As a result of combining these two different approaches, we provide an atomistic description of the role of intercalated water in modifying the frictional behaviour of physically interacting layers, e.g. MoS2. The identified interlocking mechanism, which is enhanced under load, is relevant for understanding the frictional effects observed for water confined in slit nanopores, and for nanofluidics applications.

Funder

SRC

EP

European Research Council

UK’s HEC Materials Chemistry Consortium

European Union

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3