Hydrophilized MoS2 as Lubricant Additive

Author:

Kabir M. Humaun1,Dias Darrius2,Arole Kailash1ORCID,Bahrami Reza1ORCID,Sue Hung-Jue1,Liang Hong12ORCID

Affiliation:

1. Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3127, USA

2. J. Mike Walker’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

Abstract

Molybdenum disulfide (MoS2) has been used in a variety of lubrication products due to its highly tunable surface chemistry. However, the performance of MoS2-derived tribofilms falls short when compared to other commercially available antiwear additives. The primary objective of this study is to improve the tribological performance of MoS2 as an additive for lithium-based greases. This was achieved by functionalizing the particle with hydrophilic molecules, such as urea. Experimental results indicate that the urea-functionalized MoS2 (U-MoS2) leads to a notable decrease in the coefficient of friction of 22% and a substantial reduction in the wear rate of 85% compared to its unmodified state. These results are correlated with the density functional theory (DFT) calculation of U-MoS2 to theorize two mechanisms that explain the improved performance. Urea has the capability to reside both on the surface of MoS2 and within its interlayer spacing. Weakened van der Waals forces due to interlayer expansion and the hydrophilicity of the functionalized U-MoS2 surface are catalysts for both friction reduction and the longevity of tribofilms on hydrophilic steel surfaces. These findings offer valuable insights into the development of a novel class of lubricant additives using functionalized hydrophilic molecules.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3