Abstract
Abstract
We investigated interlayer modes of few-layer HfX2 (X = S, Se) by using low-frequency micro-Raman spectroscopy with three excitation energies (1.96 eV, 2.33 eV, 2.54 eV) under vacuum condition (∼10−6Torr). We observed interlayer modes in HfSe2 when the 2.54 eV excitation energy was used. The low-frequency Raman spectra reveal a series of shear and breathing modes (<50 cm−1) that are helpful for identifying the number of layers. The in-plane E
g and out-of-plane A
1g modes of HfSe2 are located at ∼150 cm−1 and ∼200 cm−1, respectively. In HfS2, in-plane E
g and out-of-plane A
1g optical phonons are observed at ∼260 cm−1 and ∼337 cm−1, respectively. The in-plane and out-of-plane force constants of atomically thin HfSe2 are obtained to be 1.87 × 1019N m−3 and 6.55 × 1019N m−3, respectively, by fitting the observed interlayer modes using the linear chain model. These results provide valuable information on materials parameters for device designs using atomically-thin layered HfX2 (X = S, Se).
Funder
National Research Foundation of Korea
Royal Government of Cambodia through the Higher Education Improvement Project
Swedish International Development Cooperation Agency