Chemical bonding of termination species in 2D carbides investigated through valence band UPS/XPS of Ti3C2T x MXene

Author:

Näslund Lars-ÅkeORCID,Mikkelä Mikko-HeikkiORCID,Kokkonen EskoORCID,Magnuson MartinORCID

Abstract

Abstract MXenes are technologically interesting 2D materials that show potential in numerous applications. The properties of the MXenes depend at large extent on the selection of elements that build the 2D MX-layer. Another key parameter for tuning the attractive material properties is the species that terminate the surfaces of the MX-layers. Although being an important parameter, experimental studies on the bonding between the MX-layers and the termination species are few and thus an interesting subject of investigation. Here we show that the termination species fluorine (F) bonds to the Ti3C2-surface mainly through Ti 3p—F 2p hybridization and that oxygen (O) bonds through Ti 3p—O 2p hybridization with a significant contribution of Ti 3d and Ti 4p. The study further shows that the Ti3C2-surface is not only terminated by F and O on the threefold hollow face-centered-cubic site. A significant amount of O sits on a bridge site bonded to two Ti surface atoms on the Ti3C2-surface. In addition, the results provide no support for hydroxide (OH) termination on the Ti3C2-surface. On the contrary, the comparison of the valence band intensity distribution obtained through ultraviolet- and x-ray photoelectron spectroscopy with computed spectra by density of states, weighed by matrix elements and sensitivity factors, reveals that OH cannot be considered as an inherent termination species in Ti3C2T x . The results from this study have implications for correct modeling of the structure of MXenes and the corresponding materials properties. Especially in applications where surface composition and charge are important, such as supercapacitors, Li-ion batteries, electrocatalysis, and fuel- and solar cells, where intercalation processes are essential.

Funder

the Swedish Research Council

the Swedish Energy Research

the Swedish Governmental Agency for Innovation Systems

Formas

the Carl Tryggers Foundation

the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3