MXene‐Cobalt Hybrid Electrodes for Electroactive Artificial Muscle

Author:

Ali Syed Sheraz1,Mahato Manmatha1ORCID,Lam Do Van1,Sambyal Pradeep2,Valurouthu Geetha3,Garai Mousumi1,Dewan Anweshi1,Nguyen Van Hiep1,Khan Mannan1,Taseer Ashhad Kamal1,Ahn Chi Won4,Oh Il‐Kwon1ORCID

Affiliation:

1. National Creative Research Initiative for Functionally Antagonistic Nano‐Engineering Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

2. Nanomaterials and Polymer Nanocomposites Laboratory School of Engineering University of British Columbia Kelowna British Columbia V1V 1V7 Canada

3. A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA

4. National NanoFab Center (NNFC) Daejeon 34141 Republic of Korea

Abstract

The synthesis of MXene‐cobalt hybrid (MX‐Co) is presented utilizing a molten salt approach, targeting the application in artificial muscle technology. Mxenes possess exceptional electronic conductivity and surface chemistry, making them ideal candidates for electrochemical applications. Cobalt, known for its ferromagnetic qualities, is a good match for MXenes and enhances artificial muscles’ mechanical performance. By circumventing hazardous hydrofluoric (HF) acid, a facile and scalable synthesis process for MX‐Co hybrids is demonstrated. Their structural and electrochemical characteristics are revealed through characterization using cutting‐edge spectroscopic and microscopic techniques. When compared to typical PEDOT: PSS electrodes, electrochemical experiments show that MX‐Co electrodes have higher electroactive performance, with enhanced bending deformation under various input conditions. MX‐Co hybrids exhibit a specific capacitance of 77.34 F g−1, 1.6 times higher than PEDOT: PSS, and achieve a substantial enhancement of electrochemical bending displacement, up to 11.72 mm under a low input voltage of 1 V, showcasing their potential for soft actuator applications.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3