From the synthesis of hBN crystals to their use as nanosheets in van der Waals heterostructures

Author:

Maestre CamilleORCID,Li YangdiORCID,Garnier VincentORCID,Steyer PhilippeORCID,Roux SébastienORCID,Plaud Alexandre,Loiseau AnnickORCID,Barjon JulienORCID,Ren Lei,Robert CedricORCID,Han Bo,Marie XavierORCID,Journet CatherineORCID,Toury BerangereORCID

Abstract

Abstract In the wide world of 2D materials, hexagonal boron nitride (hBN) holds a special place due to its excellent characteristics. In addition to its thermal, chemical and mechanical stability, hBN demonstrates high thermal conductivity, low compressibility, and wide band gap around 6 eV, making it a promising candidate for many groundbreaking applications and more specifically in van der Waals heterostructures. Millimeters scale hBN crystals are obtained through a disruptive dual method (polymer derived ceramics (PDC)/pressure-controlled sintering (PCS)) consisting in a complementary coupling of the PDC route and a PCS process. In addition to their excellent chemical and crystalline quality, these crystals exhibit a free exciton lifetime of 0.43 ns, as determined by time-resolved cathodoluminescence measurements, confirming their interesting optical properties. To go further in applicative fields, hBN crystals are then exfoliated, and resulting boron nitride nanosheets (BNNSs) are used to encapsulate transition metal dichalcogenides (TMDs). Such van der Waals heterostructures are tested by optical spectroscopy. BNNSs do not luminesce in the emission spectral range of TMDs and the photoluminescence width of the exciton at 4 K is in the range 2–3 meV. All these results demonstrate that these BNNSs are of high quality and relevant for future opto-electronic applications.

Funder

China Scholarship Council

National Research Agency, France

Labex

European Union

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3