Direct growth of monolayer 1T–2H MoS2 heterostructures using KCl-assisted CVD process

Author:

Arellano Arreola Victor M,Salazar Mario Flores,Zhang Tianyi,Wang Ke,Barajas Aguilar Aaron H,Chandra Sekhar Reddy KORCID,Strupiechonski ElodieORCID,Terrones MauricioORCID,De Luna Bugallo AndresORCID

Abstract

Abstract Accessing the metastable phases in a controlled fashion can further expand the applications of atomically thin transition metal dichalcogenides (TMDs). Although top-down approaches based on ion intercalation exfoliation have shown to be an effective route to transform 2H phase into 1T and/or 1T′ polytype phases, a bottom-up growth strategy could be more suitable for device integration. Herein, we show that by assisting the atmospheric pressure chemical vapor deposition (APCVD) growth with a specific alkali metal halide (AMH), it possible to induce the direct synthesis of 1T phase domains coexisting with 2H phase structure in micrometer-sized MoS2 monolayer flakes. The photoluminescence emission and structural properties of three different AMH (NaCl, KBr and KCl) MoS2 crystals are compared. Both NaCl and KBr assisted MoS2 monolayers displayed the semiconducting 2H-phase. On the other hand, we demonstrate that KCl promotes the formation of a 1T–2H phase mixture. X-ray photoemission spectroscopy and resonant Raman studies performed on KCl–MoS2 monolayers show the emergence of a second chemical state and 1T Raman bands compared to the rest of the samples. High-resolution scanning transmission electron microscope imaging revealed important changes in the atomic arrangement between 2H and 1T domains, providing clear evidence of the presence of the 1T metastable phase in the lattice. Moreover, the growth 1T domains can also be controlled by modifying the deposition temperature. Our experiments show that the introduction of KCl during the APCVD growth result in stable 1T-MoS2 domains, providing a simple and reproducible route towards the polymorphism phase engineering of layered TMDs using a direct bottom-up approach.

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3