Controlling the photoluminescence of quantum emitters in hexagonal boron nitride by external magnetic fields

Author:

Korkut Hilal,Sarpkaya İbrahimORCID

Abstract

Abstract The recent observation of room temperature spin-dependent photoluminescence (PL) emission from hexagonal boron nitride’s (h-BN’s) defect centers motivates for performing a complementary low-temperature photophysical study of quantum emitters under relatively high magnetic fields. Here, we investigate the PL emission dynamics of h-BN’s visible single-photon emitters under an applied out-of-plane magnetic field at cryogenic temperatures. The PL intensity of the emitters in our work strikingly exhibits strong magnetic field dependence and decreases with the increased magnetic field. A substantial decrease in the integrated PL intensity of the emitters by up to one order of magnitude was observed when the applied field is increased from 0 T to 7 T. The observed reversible photodarkening of PL emission due to the applied magnetic field is in very well agreement with the predictions of a recent joint experimental and theoretical study and can happen only if the spin-selective, non-radiative, and asymmetric intersystem crossing transitions proceed from the triplet excited state to the lowest-lying spin-singlet metastable state and from the metastable state to the triplet ground state. Our results not only shed more light on the light emission paths of defect centers in h-BN but also show the use of the magnetic field as an efficient control knob in the development of magneto-optical devices.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Reference39 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3