Model of rough surfaces with Gaussian processes

Author:

Jawaid AORCID,Seewig JORCID

Abstract

Abstract Surface roughness plays a critical role and has effects in, e.g. fluid dynamics or contact mechanics. For example, to evaluate fluid behavior at different roughness properties, real-world or numerical experiments are performed. Numerical simulations of rough surfaces can speed up these studies because they can help collect more relevant information. However, it is hard to simulate rough surfaces with deterministic or structured components in current methods. In this work, we present a novel approach to simulate rough surfaces with a Gaussian process (GP) and a noise model because GPs can model structured and periodic elements. GPs generalize traditional methods and are not restricted to stationarity so they can simulate a wider range of rough surfaces. In this paper, we summarize the theoretical similarities of GPs with auto-regressive moving-average processes and introduce a linear process view of GPs. We also show examples of ground and honed surfaces simulated by a predefined model. The proposed method can also be used to fit a model to measurement data of a rough surface. In particular, we demonstrate this to model turned profiles and surfaces that are inherently periodic.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model‐based analysis of the influence of surface roughness on fatigue processes;PAMM;2024-08-07

2. Study on interfacial leakage characteristics of rubber sealing under temperature cycle conditions in PEM fuel cell;Modelling and Simulation in Materials Science and Engineering;2023-07-14

3. Discrete Filter and Non-Gaussian Noise for Fast Roughness Simulations with Gaussian Processes;Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3