Discrete Filter and Non-Gaussian Noise for Fast Roughness Simulations with Gaussian Processes

Author:

Jawaid A.,Seewig J.

Abstract

AbstractRough surface simulations result in tight feedback loops in research procedures, such that they speed up studies for example about roughness’ impact on tribology or fluid dynamics. To model and simulate a broad spectrum of rough surfaces, Gaussian processes (GP) have been suggested recently. However, these models are limited on surfaces with small sizes since computational time-costs and memory-costs of simulations with standard procedures scale cubically and quadratically, respectively. In this paper, we apply the discrete filter approach which is a special case of GPs. We use the discrete filter with the fast Fourier transform (FFT) algorithm to efficiently sample from a high-dimensional Gaussian distribution and we compare its computational costs with the contour integral quadrature algorithm. Our experiments show that GPs benefit from FFT and allow stationary rough surfaces with sizes as large as 30, 000 × 30, 000 to be efficiently sampled. Since this approach is complementary to the GP and noise model approach, we also show simulations of rough surfaces with underlying non-Gaussian noise models that can reduce computational complexity.

Publisher

Springer International Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3