3D fractal model with experimental analysis for assessing surface topography in EDM

Author:

Mahmood Muhammad ArifORCID,Ishfaq Kashif,Sana MuhammadORCID,Anwar Saqib,Liou Frank

Abstract

Abstract This work presents a novel three-dimensional fractal model designed specifically for morphological analysis of specimens made by the EDM. Within the 3D fractal framework, an algorithm is developed to estimate fractal parameters such as fractal dimension and periodic length. AISI 316 stainless steel, dielectric media, electrode materials, and powder variations were used in experimental trials to validate the 3D fractal model. Fixed pulse time ratios were used to control the EDM process. The specimen having the lowest fractal dimension, the shortest periodic length, the least amount of surface roughness, and the least amount of ten-point height was discovered to be the one machined using kerosene oil dielectric, brass electrode, graphite powder, and 1.0 pulse ratio time. On the other hand, the specimen machined using copper electrode, graphite powder, transformer oil dielectric, and 1.5 pulse ratio time produced the largest periodic length, maximum surface roughness, fractal dimension, and ten-point height. The developed 3D fractal model evaluates the EDM process well and provides insightful information on how to improve surface properties.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3