Study of the surface roughness and optimization of machining parameters during laser-assisted fast tool servo machining of glass-ceramic

Author:

Fan Mingxu,Zhou XiaoqinORCID,Chen Shunfa,Jiang Shan,Song Jinzhou

Abstract

Abstract Glass-ceramic is a typical hard and brittle material that is difficult to machine. In order to improve the surface quality of laser-assisted fast tool servo machining optical free-form surface of glass-ceramic, the effects of spindle speed, feed speed, piezoelectric frequency and laser power on the surface roughness were investigated. Firstly, the Taguchi method (TM) was used to establish the orthogonal experiment, and the contribution rate of each machining parameter to the surface roughness was obtained through variance and signal-to-noise ratio (S/N) analysis. The order of the influence degree of each parameter on the surface roughness is as follows: laser power > spindle speed > feed speed > piezoelectric frequency. The optimal machining parameter combinations obtained for the TM experiment are as follows: spindle speed 50 rpm, feed speed 0.01 mm rev−1, piezoelectric frequency 8 Hz, laser power 75 W. The range of surface roughness reduction obtained by comparing laser-assisted machining (LAM) with pure fast tool servo (FTS) machining is 38.75%∼58.77%. The Box-Behnken Design (BBD) in response surface methodology (RSM) was used to design experiments and a regression model for surface roughness was established through RSM. The deviation between the surface roughness predicted by the regression equation and the experimental value is less than ±6%. The influence law of various machining parameters on surface roughness was studied through three-dimensional response surface. RSM optimized the minimum surface roughness with a desirability of 99.43%. The optimal combination of machining parameters optimized through RSM is as follows: spindle speed 53.71 rpm, feed speed 0.02 mm rev−1, piezoelectric frequency 6.73 Hz, laser power 72 W. This paper is the first to combine LAM with FTS for machining optical free-form surface of glass-ceramic. This study provides a reference for laser-assisted fast tool servo machining and the research methods of surface quality.

Funder

National Natural Science Foundation of China-Regional Innovation Joint Fund Project

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Laser assisted diamond turning of silicon freeform surface;Journal of Materials Processing Technology;2023-12

2. Study on tool wear and optimization of machining parameters in laser-assisted fast tool servo machining of glass-ceramic;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3