Study on tool wear and optimization of machining parameters in laser-assisted fast tool servo machining of glass-ceramic

Author:

Fan Mingxu1,Zhou Xiaoqin1ORCID,Song Jinzhou1,Jiang Shan1,Gao Ke1,Chen Shunfa1

Affiliation:

1. School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China

Abstract

Glass-ceramic is difficult to be ultra precision machined due to its high hardness and brittleness. Laser-assisted fast tool servo machining (LAFTSM) of glass-ceramic optical free-form surface was carried out with tool wear as the characteristic value to study the machining quality of glass-ceramic. Orthogonal experiments on LAFTSM were conducted using the Taguchi method (TM). The range of tool wear reduction obtained by comparing laser-assisted machining (LAM) with fast tool servo (FTS) machining is 48.83%–64.12%. The order of contribution of each machining parameter obtained through variance analysis to the reduction of tool wear is: spindle speed > laser power > feed rate > piezoelectric frequency. The optimal combination of machining parameters that can minimize tool wear obtained through signal-to-noise ratio (S/N) analysis is: spindle speed 55 rpm, feed rate 0.01 mm/rev, piezoelectric frequency 8 Hz, laser power 75 W. Artificial neural network (ANN) and genetic algorithm (GA) were used to fit and optimize the machining parameters and experimental results in TM orthogonal experiments. The fitting values of ANN are highly consistent with the orthogonal experimental results. The optimal combination of machining parameters obtained after GA optimization analysis is: spindle speed 50 rpm, feed rate 0.015 mm/rev, piezoelectric frequency 4 Hz, laser power 75 W. Experiments were conducted using the optimal combination of machining parameters of TM and ANN, the results showed that ANN performs better than TM in predicting minimum tool wear and optimizing machining parameters. This study provides a reference for LAFTSM and the research methods of tool wear.

Funder

National Natural Science Foundation of ChinaRegional Innovation Joint Fund Project

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3