An experimental method for quantitative analysis of real contact area based on the total reflection optical principle*

Author:

Luo Zhijun,Song Baojiang,Han Jingyu,Yan Shaoze

Abstract

Abstract The simulation of real contact area between materials is foundationally important for the contact mechanics of mechanical structures. The Greenwood and Williamson (GW) model and the Majumdar (MB) model are the basic models in this field, which are widely accepted and proven to be valid in many experiments and engineering. Although the contact models have evolved considerably in recent years, the verifications of the models are most based on the indirect methods such as electrical conductivity and contact stiffness, because of the lack of effective methods to directly measure the variation of contact surface. In this paper, the total reflection (TR) method is introduced into the verification of contact models. An experiment system based on TR method is constructed to measure the real contact area of two PMMA specimens. The comparison analysis between the results of experiment and models suggests that the experiment result has the same trend with simulation, the MB model has better agreement with the experimental result because this method can take into account the variation of radius and the merging of asperities, while the GW model has a huge deviation because of the dependence on resolution and the lack of considering the variation of radius and asperity’s merging process. Taking the interaction of asperities into account could give a better result that is closer to the experiment. Our results and analysis prove that the experimental methods in this paper could be used as a more direct and valid method to quantitatively measure the real contact area and to verify the contact models.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3