Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network

Author:

Meng Hai-Yang,Xu Zi-Xiang,Yang Jing,Liang Bin,Cheng Jian-Chun

Abstract

Accurate and fast prediction of aerodynamic noise has always been a research hotspot in fluid mechanics and aeroacoustics. The conventional prediction methods based on numerical simulation often demand huge computational resources, which are difficult to balance between accuracy and efficiency. Here, we present a data-driven deep neural network (DNN) method to realize fast aerodynamic noise prediction while maintaining accuracy. The proposed deep learning method can predict the spatial distributions of aerodynamic noise information under different working conditions. Based on the large eddy simulation turbulence model and the Ffowcs Williams–Hawkings acoustic analogy theory, a dataset composed of 1216 samples is established. With reference to the deep learning method, a DNN framework is proposed to map the relationship between spatial coordinates, inlet velocity and overall sound pressure level. The root-mean-square-errors of prediction are below 0.82 dB in the test dataset, and the directivity of aerodynamic noise predicted by the DNN framework are basically consistent with the numerical simulation. This work paves a novel way for fast prediction of aerodynamic noise with high accuracy and has application potential in acoustic field prediction.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3