Author:
Yin Siqi,Zhao Le,Song Cheng,Huang Yuan,Gu Youdi,Chen Ruyi,Zhu Wenxuan,Sun Yiming,Jiang Wanjun,Zhang Xiaozhong,Pan Feng
Abstract
Two-dimensional (2D) magnets provide an ideal platform to explore new physical phenomena in fundamental magnetism and to realize the miniaturization of magnetic devices. The study on its domain structure evolution with thickness is of great significance for better understanding the 2D magnetism. Here, we investigate the magnetization reversal and domain structure evolution in 2D ferromagnet Fe3GeTe2 (FGT) with a thickness range of 11.2–112 nm. Three types of domain structures and their corresponding hysteresis loops can be obtained. The magnetic domain varies from a circular domain via a dendritic domain to a labyrinthian domain with increasing FGT thickness, which is accompanied by a transition from squared to slanted hysteresis loops with reduced coercive fields. These features can be ascribed to the total energy changes from exchange interaction-dominated to dipolar interaction-dominated with increasing FGT thickness. Our finding not only enriches the fundamental magnetism, but also paves a way towards spintronics based on 2D magnet.
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献