Magnetic field assisted stabilization of circular double wall domain lattice in oxidized Fe3GeTe2 flakes

Author:

Pappas PORCID,Georgopoulou-Kotsaki EORCID,Lintzeris AORCID,Dimoulas AORCID

Abstract

Abstract The family of 2D ferromagnets is in the center of research for novel spintronics applications. Among the various 2D ferromagnets, Fe3GeTe2 has drawn significant attention since it combines a high Curie temperature with a van der Waals structure, which allows easy exfoliation, and a high spin polarization/large spin–orbit coupling. The presence of interfacial DMI in 2D ferromagnets have a significant impact on the behavior of magnetic domain walls, which are fundamental in magnetic memory and logic devices. By controlling the interfacial DMI, it is possible to manipulate the motion of domain walls and the magnetic domain configuration, which is essential for the development of efficient and reliable magnetic devices. In this study, we investigate the effect of an, inversion symmetry breaking, oxidized layer on the magnetic domain structure of Fe3GeTe2 flakes due to the emergence of interfacial DMI. By combining magneto-optical Kerr effect microscopy images and micromagnetic simulations, we study the formation of a circular double wall (CDW) domain lattice in oxidized flakes under specific field cooling and magnetic field sweeping protocols. Their formation is attributed to a competition between the exchange interaction both symmetric and antisymmetric (associated to interfacial DMI), magnetocrystalline anisotropy and the external magnetic field. The CDW domains have a diameter of several microns, a magnetic structure resembling that of a skyrmionium and are arranged in regular lattice that survives thermal fluctuations close to T c. Our results suggest that these CDW domains transition to Néel type skyrmions after a magnetic field threshold. These findings could have important implications for the design and optimization of 2D ferromagnetic materials for spintronic applications.

Funder

Horizon 2020 Framework Programme -FET Proactive 'SKYTOP’

European Social Fund

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3