β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings

Author:

He 何 Qiming 启鸣,Hao 郝 Weibing 伟兵,Li 李 Qiuyan 秋艳,Han 韩 Zhao 照,He 贺 Song 松,Liu 刘 Qi 琦,Zhou 周 Xuanze 选择,Xu 徐 Guangwei 光伟,Long 龙 Shibing 世兵

Abstract

Recently, β-Ga2O3, an ultra-wide bandgap semiconductor, has shown great potential to be used in power devices blessed with its unique material properties. For instance, the measured average critical field of the vertical Schottky barrier diode (SBD) based on β-Ga2O3 has reached 5.45 MV/cm, and no device in any material has measured a greater before. However, the high electric field of the β-Ga2O3 SBD makes it challenging to manage the electric field distribution and leakage current. Here, we show β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings (FFRs). For the central anode, we filled a circular trench array with NiO to reduce the surface field under the Schottky contact between them to reduce the leakage current of the device. For the anode edge, experimental results have demonstrated that the produced NiO/β-Ga2O3 heterojunction FFRs enable the spreading of the depletion region, thereby mitigating the crowding effect of electric fields at the anode edge. Additionally, simulation results indicated that the p-NiO field plate structure designed at the edges of the rings and central anode can further reduce the electric field. This work verified the feasibility of the heterojunction FFRs in β-Ga2O3 devices based on the experimental findings and provided ideas for managing the electric field of β-Ga2O3 SBD.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3