Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films*

Author:

Li Qiang,Wang Dao,Zhang Yan,Li Yu-Shan,Zhang Ai-Hua,Tao Rui-Qiang,Fan Zhen,Zeng Min,Zhou Guo-Fu,Lu Xu-Bing,Liu Jun-Ming

Abstract

Sr-doped Ba0.7La0.3TiO3 (BSLTO) thin films are deposited by pulsed laser deposition, and their microstructure, conductivity, carrier transport mechanism, and ferroelectricity are systematically investigated. The x-ray diffraction measurements demonstrate that Sr-doping reduces the lattice constant of BSLTO thin films, resulting in the enhanced phonon energy in the films as evidenced by the Raman measurements. Resistivity-temperature and Hall effect measurements demonstrate that Sr can gradually reduce electrical resistivity while the electron concentration remains almost unchanged at high temperatures. For the films with semiconducting behavior, the charge transport model transforms from variable range hopping to small polaron hopping as the measurement temperature increases. The metalic conductive behaviors in the films with Sr = 0.30, 0.40 conform to thermal phonon scattering mode. The difference in charge transport behavior dependent on the A-site cation doping, is clarified. It is revealed that the increasing of phonon energy by Sr doping is responsible for lower activation energy of small polaron hopping, higher carrier mobility, and lower electrical resistivity. Interestingly, the piezoelectric force microscopy (PFM) results demonstrate that all the BSLTO films can exhibit ferroelectricity, especially for the room temperature metallic conduction film with Sr = 0.40. These results imply that Sr-doping could be a potential way to explore ferroelectric metal materials for other perovskite oxides.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3