Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement*

Author:

Cai Ning,Chen Zhe-Bo,Cao Xiang-Qun,Lin Bin

Abstract

Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional (3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust binary fringe pattern optimization for optical three-dimensional shape measurement;Journal of Modern Optics;2023-05-21

2. Flexible Error Diffusion Algorithm for Binary Defocusing Fringe Projection Profilometry;IEEE Transactions on Instrumentation and Measurement;2023

3. Real-Time Pixelated Non-Photorealistic Rendering Method;Computer Science and Application;2023

4. 3D object reconstruction algorithm based on dynamic threshold dithering technique;Seventh Asia Pacific Conference on Optics Manufacture and 2021 International Forum of Young Scientists on Advanced Optical Manufacturing (APCOM and YSAOM 2021);2022-02-15

5. An Optimizing Diffusion Kernel-Based Binary Encoding Strategy With Genetic Algorithm for Fringe Projection Profilometry;IEEE Transactions on Instrumentation and Measurement;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3