Charge trapping effect at the interface of ferroelectric/interlayer in the ferroelectric field effect transistor gate stack

Author:

Sun Xiaoqing,Xu Hao,Chai Junshuai,Wang Xiaolei,Wang Wenwu

Abstract

We study the charge trapping phenomenon that restricts the endurance of n-type ferroelectric field-effect transistors (FeFETs) with metal/ferroelectric/interlayer/Si (MFIS) gate stack structure. In order to explore the physical mechanism of the endurance failure caused by the charge trapping effect, we first establish a model to simulate the electron trapping behavior in n-type Si FeFET. The model is based on the quantum mechanical electron tunneling theory. And then, we use the pulsed I dV g method to measure the threshold voltage shift between the rising edges and falling edges of the FeFET. Our model fits the experimental data well. By fitting the model with the experimental data, we get the following conclusions. (i) During the positive operation pulse, electrons in the Si substrate are mainly trapped at the interface between the ferroelectric (FE) layer and interlayer (IL) of the FeFET gate stack by inelastic trap-assisted tunneling. (ii) Based on our model, we can get the number of electrons trapped into the gate stack during the positive operation pulse. (iii) The model can be used to evaluate trap parameters, which will help us to further understand the fatigue mechanism of FeFET.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3