Simulations of superconducting quantum gates by digital flux tuner for qubits

Author:

Geng 耿 Xiao 霄,He 何 Kaiyong 楷泳,Liu 刘 Jianshe 建设,Chen 陈 Wei 炜

Abstract

Abstract The interconnection bottleneck caused by limitations of cable number, inner space and cooling power of dilution refrigerators has been an outstanding challenge for building scalable superconducting quantum computers with the increasing number of qubits in quantum processors. To surmount such an obstacle, it is desirable to integrate qubits with quantum–classical interface (QCI) circuits based on rapid single flux quantum (RSFQ) circuits. In this work, a digital flux tuner for qubits (DFTQ) is proposed for manipulating flux of qubits as a crucial part of the interface circuit. A schematic diagram of the DFTQ is presented, consisting of a coarse tuning unit and a fine-tuning unit for providing magnetic flux with different precision to qubits. The method of using DFTQ to provide flux for gate operations is discussed from the optimization of circuit design and input signal. To verify the effectiveness of the method, simulations of a single DFTQ and quantum gates including a Z gate and an iSWAP gate with DFTQs are performed for flux-tunable transmons. The quantum process tomography corresponding to the two gates is also carried out to analyze the sources of gate error. The results of tomography show that the gate fidelities independent of the initial states of the Z gate and the iSWAP gate are 99.935% and 99.676%, respectively. With DFTQs inside, the QCI would be a powerful tool for building large-scale quantum computers.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3