Dipole–dipole interactions enhance non-Markovianity and protect information against dissipation*

Author:

Jan Munsif,Xu Xiao-Ye,Wang Qin-Qin,Chen Zhe,Han Yong-Jian,Li Chuan-Feng,Guo Guang-Can

Abstract

Preserving non-Markovianity and quantum entanglement from decoherence effect is of theoretical and practical significance in the quantum information processing technologies. In this context, we study a system S that is initially correlated with an ancilla A, which interacts with the environment E via an amplitude damping channel. We also consider dipole-dipole interactions (DDIs) between the system and ancilla, which are responsible for strong correlations. We investigate the impact of DDIs and detuning on the non-Markovianity and information exchange in different environments. We show that DDIs are not only better than detuning at protecting the information (without destroying the memory effect) but also induce memory by causing a transition from Markovian to non-Markovian dynamics. In contrast, although detuning also protects the information, it causes a transition from non-Markovian to the Markovian dynamics. In addition, we demonstrate that the non-Markovianity grows with increasing DDI strength and diminishes with increasing detuning. We also show that the effects of negative detuning and DDIs can cancel out each other, causing a certain loss of coherence and information.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3