Manipulation of transmission properties of a ladder-four-level Rydberg atomic system

Author:

Gao Xiao-Ping,Liang Jing-Rui,Liu Tang-Kun,Li Hong,Liu Ji-Bing, ,

Abstract

In this paper, we study the interaction of a giant ladder type four-level Rydberg atomic system with a weak light field and two strong control fields separately. We use the Monte Carlo method to calculate the dynamic evolution of this system and investigate the influence of dipole-dipole interaction on the transmission spectrum and second-order intensity correlation function of the weak probe field. By changing the value of detuning <inline-formula><tex-math id="M1">\begin{document}$\delta_e$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20202077_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20202077_M1.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$\delta_r$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20202077_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20202077_M2.png"/></alternatives></inline-formula>, we can obtain the asymmetric transmission spectrum of the four-level Rydberg atomic system. The influence of Doppler effect on transmission spectrum and second-order intensity correlation function are also studied. By using super atom model, the influences of different incident probe field intensities on the transmission spectrum and the second-order intensity correlation function of probe field are discussed in the Rydberg atomic system. The results show that the transmission spectrum of the four-level Rydberg atomic system is symmetric when the detuning <inline-formula><tex-math id="M3">\begin{document}$\delta_e=\delta_r=0$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20202077_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20202077_M3.png"/></alternatives></inline-formula>. We obtain the asymmetric transmission spectrum of the system when the value of detuning <inline-formula><tex-math id="M4">\begin{document}$(\delta_e, \delta_r)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20202077_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20202077_M4.png"/></alternatives></inline-formula> changes from 0 to 43 MHz. In order to evaluate the influence of temperature on the transmission spectrum of the system, the Lorentz distribution function is introduced to calculate the polarizability analytically. And, the influence of temperature on the asymmetric transmission spectrum and the second-order intensity correlation function are discussed at finite temperature separately. The results show that the transmittance of the outgoing probe field at the transparent window decreases with the increase of the intensity of the incident probe light field under the condition of electromagnetically induced transparency. When the intensity of the incident probe field is constant, the asymmetric transmission spectrum can be obtained by changing the detuning of the strong field. In addition, when the propagation direction of the probe field is consistent with that of the strong field, the peak value of the transmission spectrum and the peak value of the second-order intensity correlation function of the system slightly increase as the temperature increases. When the propagation direction of the detection field is inconsistent with that of the strong field, the influence of the Doppler effect on the transmission spectrum and the second-order intensity correlation function of the system can be ignored.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3