Author:
He Xiao-Bo,Hu Hua-Tian,Tang Ji-Bo,Zhang Guo-Zhen,Chen Xue,Shi Jun-Jun,Ou Zhen-Wei,Shi Zhi-Feng,Zhang Shun-Ping,Liu Chang,Xu Hong-Xing
Abstract
Abstract
Light emission by inelastic tunneling (LEIT) from a metal–insulator–metal tunnel junction is an ultrafast emission process. It is a promising platform for ultrafast transduction from electrical signal to optical signal on integrated circuits. However, existing procedures of fabricating LEIT devices usually involve both top-down and bottom-up techniques, which reduces its compatibility with the modern microfabrication streamline and limits its potential applications in industrial scale-up. Here in this work, we lift these restrictions by using a multilayer insulator grown by atomic layer deposition as the tunnel barrier. For the first time, we fabricate an LEIT device fully by microfabrication techniques and show a stable performance under ambient conditions. Uniform electroluminescence is observed over the entire active region, with the emission spectrum shaped by metallic grating plasmons. The introduction of a multilayer insulator into the LEIT can provide an additional degree of freedom for engineering the energy band landscape of the tunnel barrier. The presented scheme of preparing a stable ultrathin tunnel barrier may also find some applications in a wide range of integrated optoelectronic devices.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献