Controlling acoustic orbital angular momentum with artificial structures: From physics to application

Author:

Wang Wei,Liu Jingjing,Liang Bin,Cheng Jianchun

Abstract

Acoustic orbital angular momentum (OAM) associated with helicoidal wavefront recently attracts rapidly-growing attentions, offering a new degree of freedom for acoustic manipulation. Due to the unique dynamical behavior and inherent mode orthogonality of acoustic OAM, its harnessing is of fundamental interests for wave physics, with great potential in a plethora of applications. The recent advance in materials physics further boosts efforts into controlling OAM-carrying acoustic vortices, especially acoustic metasurfaces with planar profile and subwavelength thickness. Thanks to their unconventional acoustic properties beyond attainable in the nature, acoustic artificial structures provide a powerful platform for new research paradigm for efficient generation and diverse manipulation of OAM in ways not possible before, enabling novel applications in diverse scenarios ranging from underwater communication to object manipulation. In this article, we present a comprehensive view of this emerging field by delineating the fundamental physics of OAM–metasurface interaction and recent advances in the generation, manipulation, and application of acoustic OAM based on artificial structures, followed by an outlook for promising future directions and potential practical applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3