Geometric Phase in Twisted Topological Complementary Pair

Author:

Zhang Kun1,Li Xiao1,Dong Daxing1,Xue Ming1,You Wen‐Long1,Liu Youwen1,Gao Lei2,Jiang Jian‐Hua2,Chen Huanyang3,Xu Yadong2,Fu Yangyang14ORCID

Affiliation:

1. College of Physics Key Laboratory of Aerospace Information Materials and Physics (MIIT) Nanjing University of Aeronautics and Astronautics (NUAA) Nanjing 211106 China

2. School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Soochow University Suzhou 215006 China

3. Department of Physics Xiamen University Xiamen 361005 China

4. State Key Laboratory of Mechanics and Control for Aerospace Structures Nanjing University of Aeronautics and Astronautics (NUAA) Nanjing 211106 China

Abstract

AbstractGeometric phase enabled by spin‐orbit coupling has attracted enormous interest in optics over the past few decades. However, it is only applicable to circularly‐polarized light and encounters substantial challenges when applied to wave fields lacking the intrinsic spin degree of freedom. Here, a new paradigm is presented for achieving geometric phase by elucidating the concept of topological complementary pair (TCP), which arises from the combination of two compact phase elements possessing opposite intrinsic topological charge. Twisting the TCP leads to the generation of a linearly‐varying geometric phase of arbitrary order, which is quantified by the intrinsic topological charge. Notably distinct from the conventional spin‐orbit coupling‐based theories, the proposed geometric phase is the direct result of the cyclic evolution of orbital‐angular‐momentum transformation in mode space, thereby exhibiting universality across classical wave systems. As a proof of concept, the existence of this geometric phase is experimentally demonstrated using scalar acoustic waves, showcasing the remarkable ability in the precise manipulation of acoustic waves at subwavelength scales. These findings engender a fresh understanding of wave‐matter interaction in compact structures and establish a promising platform for exploring geometric phase, offering significant opportunities for diverse applications in wave systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acoustic vortex filter based on tunable metasurfaces;Applied Physics Letters;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3