Ultrafast carrier dynamics in GeSn thin film based on time-resolved terahertz spectroscopy

Author:

Huang 黄 Panpan 盼盼,Zhang 张 Youlu 有禄,Hu 胡 Kai 凯,Qi 齐 Jingbo 静波,Zhang 张 Dainan 岱南,Cheng 程 Liang 亮

Abstract

We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers. The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm, and its pump-induced photoconductivity can be explained by the Drude–Smith model. The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture. The first- and second-order recombination rates are obtained by the rate equation fitting, which are (2.6 ± 1.1) × 10−2 ps−1 and (6.6 ± 1.8) × 10−19 cm3⋅ps−1, respectively. Meanwhile, we also obtain the diffusion length of photo-generated carriers in GeSn, which is about 0.4 μm, and it changes with the pump delay time. These results are important for the GeSn-based infrared optoelectronic devices, and demonstrate that GeSn materials can be applied to high-speed optoelectronic detectors and other applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3