Author:
Huang 黄 Panpan 盼盼,Zhang 张 Youlu 有禄,Hu 胡 Kai 凯,Qi 齐 Jingbo 静波,Zhang 张 Dainan 岱南,Cheng 程 Liang 亮
Abstract
We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers. The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm, and its pump-induced photoconductivity can be explained by the Drude–Smith model. The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture. The first- and second-order recombination rates are obtained by the rate equation fitting, which are (2.6 ± 1.1) × 10−2 ps−1 and (6.6 ± 1.8) × 10−19 cm3⋅ps−1, respectively. Meanwhile, we also obtain the diffusion length of photo-generated carriers in GeSn, which is about 0.4 μm, and it changes with the pump delay time. These results are important for the GeSn-based infrared optoelectronic devices, and demonstrate that GeSn materials can be applied to high-speed optoelectronic detectors and other applications.
Subject
General Physics and Astronomy