Author:
Bi Haiyun,Qi Guoyuan,Hu Jianbing,Wu Qiliang
Abstract
Quantum-classical correspondence is affirmed via performing Wigner function and a classical-quantum chaotic system containing random variables. The classical-quantum system is transformed into a Kolmogorov model for force and energy analysis. Combining different forces, the system is divided into two categories: conservative and non-conservative, revealing the mechanical characteristic of the classical-quantum system. The Casimir power, an analysis tool, is employed to find the key factors governing the orbital trajectory and the energy cycle of the system. Detailed analyses using the Casimir power and an energy transformation uncover the causes of the different dynamic behaviors, especially chaos. For the corresponding classical Hamiltonian system when Planck’s constant ħ → 0, the supremum bound of the system is derived analytically. Difference between the classical-quantum system and the classical Hamiltonian system is displayed through trajectories and energies. Quantum-classical correspondences are further demonstrated by comparing phase portrait, kinetic, potential and Casimir energies of the two systems.
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献