Abstract
Rapid developments in artificial intelligence trigger demands for perception and learning of external environments through visual perception systems. Neuromorphic devices and integrated system with photosensing and response functions can be constructed to mimic complex biological visual sensing behaviors. Here, recent progresses on optoelectronic neuromorphic memristors and optoelectronic neuromorphic transistors are briefly reviewed. A variety of visual synaptic functions stimulated on optoelectronic neuromorphic devices are discussed, including light-triggered short-term plasticities, long-term plasticities, and neural facilitation. These optoelectronic neuromorphic devices can also mimic human visual perception, information processing, and cognition. The optoelectronic neuromorphic devices that simulate biological visual perception functions will have potential application prospects in areas such as bionic neurological optoelectronic systems and intelligent robots.
Subject
General Physics and Astronomy
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献