Speeding-up direct implicit particle-in-cell simulations in bounded plasma by obtaining future electric field through explicitly propulsion of particles

Author:

Tan 谭 Haiyun 海云,Huang 黄 Tianyuan 天源,Ji 季 Peiyu 佩宇,Zhou 周 Mingjie 铭杰,Zhuge 诸 Lanjian 葛兰剑,Wu 吴 Xuemei 雪梅

Abstract

The direct implicit particle-in-cell is a powerful kinetic method for researching plasma characteristics. However, it is time-consuming to obtain the future electromagnetic field in such a method since the field equations contain time-dependent matrix coefficients. In this work, we propose to explicitly push particles and obtain the future electromagnetic field based on the information about the particles in the future. The new method retains the form of implicit particle pusher, but the future field is obtained by solving the traditional explicit equation. Several numerical experiments, including the motion of charged particle in electromagnetic field, plasma sheath, and free diffusion of plasma into vacuum, are implemented to evaluate the performance of the method. The results demonstrate that the proposed method can suppress finite-grid-instability resulting from the coarse spatial resolution in electron Debye length through the strong damping of high-frequency plasma oscillation, while accurately describe low-frequency plasma phenomena, with the price of losing the numerical stability at large time-step. We believe that this work is helpful for people to research the bounded plasma by using particle-in-cell simulations.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3