Study of the photoelectrochemical activity of ZnO: Ag/rGO photo-anodes synthesized by two-steps sol-gel method

Author:

Jemia D. Ben,Karyaoui M.,Wederni M. A.,Bardaoui A.,Martinez-Huerta M. V.,Amlouk M.,Chtourou R.

Abstract

Abstract This work investigate the influence of Silver Plasmon and reduced graphene oxide (rGO) on the photoelectrochemical performance (PEC) of ZnO thin films synthesized by the sol-gel method. The physicochemical properties of the obtained photo-anodes were systematically studied using several characterization techniques. The X-ray diffraction analysis showed that all samples presented hexagonal Wurtzite structure with apolycrystalline nature. Raman and EDX studies confirmed the existence of both Ag and rGO in ZnO: Ag/rGO thin films. The estimated grain size obtained from (SEM) analysis decreased with Ag doping, then increased to a maximum value after rGO addition. The UV-vis transmission spectra of the as-prepared ZnO: Ag and ZnO: Ag/rGO thin films have shown a reduction in the visible range with a redshift at the absorption edges. The bandgaps were estimated to be around 3.17, 2.7, and 2.52 eV for ZnO, ZnO: Ag, and ZnO: Ag/rGO, respectively. Moreover, the electrical measurements revealed that the charge exchange processes were enhanced at the ZnO: Ag/rGO/electrolyte interface, accompanied by an increase in the (PEC) performance compared to ZnO and ZnO: Ag photo-anodes. Consequently, the photocurrent density of ZnO: Ag/rGO (0.2 mA.cm-2) was around 4 and 2.22 times higher than photo-anodes based on undoped ZnO (0.05 mA.cm-2) and ZnO: Ag (0.09 mA.cm-2), respectively. Finally, from the flat band potential and donor density, deduced from the Mott-Schottky, it was clear that all the samples were n-type semiconductors with the highest carrier density for the ZnO: Ag/rGO photo-anode.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3