Author:
Jemia D. Ben,Karyaoui M.,Wederni M. A.,Bardaoui A.,Martinez-Huerta M. V.,Amlouk M.,Chtourou R.
Abstract
Abstract
This work investigate the influence of Silver Plasmon and reduced graphene oxide (rGO) on the photoelectrochemical performance (PEC) of ZnO thin films synthesized by the sol-gel method. The physicochemical properties of the obtained photo-anodes were systematically studied using several characterization techniques. The X-ray diffraction analysis showed that all samples presented hexagonal Wurtzite structure with apolycrystalline nature. Raman and EDX studies confirmed the existence of both Ag and rGO in ZnO: Ag/rGO thin films. The estimated grain size obtained from (SEM) analysis decreased with Ag doping, then increased to a maximum value after rGO addition. The UV-vis transmission spectra of the as-prepared ZnO: Ag and ZnO: Ag/rGO thin films have shown a reduction in the visible range with a redshift at the absorption edges. The bandgaps were estimated to be around 3.17, 2.7, and 2.52 eV for ZnO, ZnO: Ag, and ZnO: Ag/rGO, respectively. Moreover, the electrical measurements revealed that the charge exchange processes were enhanced at the ZnO: Ag/rGO/electrolyte interface, accompanied by an increase in the (PEC) performance compared to ZnO and ZnO: Ag photo-anodes. Consequently, the photocurrent density of ZnO: Ag/rGO (0.2 mA.cm-2) was around 4 and 2.22 times higher than photo-anodes based on undoped ZnO (0.05 mA.cm-2) and ZnO: Ag (0.09 mA.cm-2), respectively. Finally, from the flat band potential and donor density, deduced from the Mott-Schottky, it was clear that all the samples were n-type semiconductors with the highest carrier density for the ZnO: Ag/rGO photo-anode.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献