Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments*

Author:

Liu Lin,Zhang Xiu-Mei,Wang Xiu-Ming

Abstract

Based on Carcione–Leclaire model, the time-splitting high-order staggered-grid finite-difference algorithm is proposed and constructed for understanding wave propagation mechanisms in gas hydrate-bearing sediments. Three compressional waves and two shear waves, as well as their energy distributions are investigated in detail. In particular, the influences of the friction coefficient between solid grains and gas hydrate and the viscosity of pore fluid on wave propagation are analyzed. The results show that our proposed numerical simulation algorithm proposed in this paper can effectively solve the problem of stiffness in the velocity–stress equations and suppress the grid dispersion, resulting in higher accuracy compared with the result of the Fourier pseudospectral method used by Carcione. The excitation mechanisms of the five wave modes are clearly revealed by the results of simulations. Besides, it is pointed that, the wave diffusion of the second kind of compressional and shear waves is influenced by the friction coefficient between solid grains and gas hydrate, while the diffusion of the third compressional wave is controlled by the fluid viscosity. Finally, two fluid–solid (gas-hydrate formation) models are constructed to study the mode conversion of various waves. The results show that the reflection, transmission, and transformation of various waves occur on the interface, forming a very complicated wave field, and the energy distribution of various converted waves in different phases is different. It is demonstrated from our studies that, the unconventional waves, such as the second and third kinds of compressional waves may be converted into conventional waves on an interface. These propagation mechanisms provide a concrete wave attenuation explanation in inhomogeneous media.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3