A modified heuristics-based model for simulating realistic pedestrian movement behavior

Author:

Wang Wei-Li,Li Hai-Cheng,Rong Jia-Yu,Fan Qin-Qin,Han Xin,Cong Bei-Hua

Abstract

Pedestrian movement simulation models are used in various areas, such as building evacuation, transportation engineering, and safety management of large events. It also provides effective means to uncover underlying mechanisms of collective behaviors. In this work, a modified heuristics-based model is presented. In this model, the potential collisions in the moving process are explicitly considered. Meanwhile, a series of simulations is conducted in two typical scenarios to demonstrate the influence of critical parameters on model performance. It is found that when facing a wide obstacle in a corridor, the larger the visual radius, the earlier the pedestrian starts to make a detour. In addition, when a pedestrian observes a large crowd walking toward him, he chooses to make a detour and moves in the flow in a uniform direction. Furthermore, the model can reproduce the lane formation pedestrian flow phenomena in relatively high-density situations. With the increase of pedestrian visual radius and the weight of potential collision resistance, more stable pedestrian lanes and fewer moving-through-the-counterflow pedestrians can be observed. In terms of model validation, the density-speed relationship of simulation results accords well with that of the published empirical data. Our results demonstrate that the modified heuristics-based model can overcome the deficiency of the original model, and reproduce more realistic pedestrian movement behavior.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A literature review of dense crowd simulation;Simulation Modelling Practice and Theory;2024-07

2. An Unmanned System-Guided Crowd Evacuation Method in Complex and Large-Scale Evacuation Environments;IEEE Transactions on Automation Science and Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3