Assessing crowd management strategies for the 2010 Love Parade disaster using computer simulations and virtual reality

Author:

Zhao Hantao1ORCID,Thrash Tyler123ORCID,Kapadia Mubbasir4ORCID,Wolff Katja5,Hölscher Christoph1ORCID,Helbing Dirk6,Schinazi Victor R.17ORCID

Affiliation:

1. Chair of Cognitive Science, ETH Zürich, Zurich, Switzerland

2. Geographic Information Visualization and Analysis, University of Zürich, Zurich, Switzerland

3. Digital Society Initiative, University of Zürich, Zurich, Switzerland

4. Department of Computer Science, Rutgers University, Piscataway, NJ, USA

5. Interactive Geometry Lab, ETH Zürich, Zurich, Switzerland

6. Computational Social Science, ETH Zürich, Zurich, Switzerland

7. Department of Psychology, Bond University, Gold Coast, Queensland, Australia

Abstract

Dense crowds in public spaces have often caused serious security issues at large events. In this paper, we study the 2010 Love Parade disaster, for which a large amount of data (e.g. research papers, professional reports and video footage) exist. We reproduce the Love Parade disaster in a three-dimensional computer simulation calibrated with data from the actual event and using the social force model for pedestrian behaviour. Moreover, we simulate several crowd management strategies and investigate their ability to prevent the disaster. We evaluate these strategies in virtual reality (VR) by measuring the response and arousal of participants while experiencing the simulated event from a festival attendee’s perspective. Overall, we find that opening an additional exit and removing the police cordons could have significantly reduced the number of casualties. We also find that this strategy affects the physiological responses of the participants in VR.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3