Quantum nature of proton transferring across one-dimensional potential fields*

Author:

Bi Cheng,Chen Quan,Li Wei,Yang Yong

Abstract

Proton transfer plays a key role in the applications of advanced energy materials as well as in the functionalities of biological systems. In this work, based on the transfer matrix method, we study the quantum effects of proton transfer in a series of one-dimensional (1D) model potentials and numerically calculate the quantum probability of transferring across single and double barriers (wells). In the case of single barriers, when the incident energies of protons are above the barrier height, the quantum oscillations in the transmission coefficients depend on the geometric shape of the barriers. It is found that atomic resonant tunneling (ART) not only presents in the rectangular single well and rectangular double barriers as expected, but also exists in the other types of potential wells and double barriers. For hetero-structured double barriers, there is no resonant tunneling in the classical forbidden zone, i.e., in the case when the incident energy (E i) is lower than the barrier height (E b). Furthermore, we have provided generalized analysis on the characteristics of transmission coefficients of hetero-structured rectangular double barriers.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3