Author:
Yu Xiaofan,Tong Yangwu,Yang Yong
Abstract
The adsorption and diffusion of hydrogen atoms on Cu(001) are studied using first-principles calculations. By taking into account the contribution of zero-point energy (ZPE), the originally identical barriers are shown to be different for H and D, which are respectively calculated to be ∼158 meV and ∼139 meV in height. Using the transfer matrix method (TMM), we are able to calculate the accurate probability of transmission across the barriers. The crucial role of quantum tunneling is clearly demonstrated at low-temperature region. By introducing a temperature-dependent attempting frequency prefactor, the rate constants and diffusion coefficients are calculated. The results are in agreement with the experimental measurements at temperatures from ∼50 K to 80 K.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献