Magneto-transport properties of thin flakes of Weyl semiconductor tellurium*

Author:

Zhang Nan,Cheng Bin,Li Hui,Li Lin,Zeng Chang-Gan

Abstract

As an elemental semiconductor, tellurium has recently attracted intense interest due to its non-trivial band topology, and the resulted intriguing topological transport phenomena. In this study we report systematic electronic transport studies on tellurium flakes grown via a simple vapor deposition process. The sample is self-hole-doped, and exhibits typical weak localization behavior at low temperatures. Substantial negative longitudinal magnetoresistance under parallel magnetic field is observed over a wide temperature region, which is considered to share the same origin with that in tellurium bulk crystals, i.e., the Weyl points near the top of valence band. However, with lowering temperature the longitudinal magnetoconductivity experiences a transition from parabolic to linear field dependency, differing distinctly from the bulk counterparts. Further analysis reveals that such a modulation of Weyl behaviors in this low-dimensional tellurium structure can be attributed to the enhanced inter-valley scattering at low temperatures. Our results further extend Weyl physics into a low-dimensional semiconductor system, which may find its potential application in designing topological semiconductor devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3