Induced magneto-conductivity in a two-nodeWeyl semimetal under Gaussian random disorder

Author:

Xu 徐 Chuanxiong 川雄,Yu 于 Haoping 昊平,Zhou 周 Mei 梅,Ji 吉 Xuanting 轩廷

Abstract

Abstract Measuring the magneto-conductivity induced from impurities may help determine the impurity distribution and reveal the structure of a Weyl semimetal sample. To verify this, we utilize the Gaussian random disorder to simulate charged impurities in a two-node Weyl semimetal model and investigate the impact of charged impurities on magneto-conductivity in Weyl semimetals. We first compute the longitudinal magnetic conductivity and find that it is positive and increases proportionally with the parameter governing the Gaussian distribution of charged impurities, suggesting the presence of negative longitudinal magneto-resistivity. Then we consider both the intra-valley and inter-valley scattering processes to calculate the induced transverse magneto-conductivity in the model. Our findings indicate that both inter-valley and intra-valley scattering processes play important roles in the transverse magneto-conductivity. The locations of Weyl nodes can also be determined by magneto-conductivity measurements. This is possible if the magnetic field strength and the density of charged impurities are known. Alternatively, the measurement of magnetic conductivity may reveal the distribution of charged impurities in a given sample once the locations of the Weyl nodes have been determined. These findings can aid in detecting the structure of a Weyl semimetal sample, enhancing comprehension of magnetotransport in Weyl semimetals and promoting the development of valley electronics.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3