Author:
Zhou Jie,Wang Xueyan,Chen Zhiqingzi,Zhang Libo,Yao Chenyu,Du Weijie,Zhang Jiazhen,Xing Huaizhong,Fu Nanxin,Chen Gang,Wang Lin
Abstract
With the rapid development of terahertz technology, terahertz detectors are expected to play a key role in diverse areas such as homeland security and imaging, materials diagnostics, biology, medical sciences, and communication. Whereas self-powered, rapid response, and room temperature terahertz photodetectors are confronted with huge challenges. Here, we report a novel rapid response and self-powered terahertz photothermoelectronic (PTE) photodetector based on a low-dimensional material: palladium selenide (PdSe2). An order of magnitude performance enhancement was observed in photodetection based on PdSe2/graphene heterojunction that resulted from the integration of graphene and enhanced the Seebeck effect. Under 0.1-THz and 0.3-THz irradiations, the device displays a stable and repeatable photoresponse at room temperature without bias. Furthermore, rapid rise (5.0 μs) and decay (5.4 μs) times are recorded under 0.1-THz irradiation. Our results demonstrate the promising prospect of the detector based on PdSe2 in terms of air-stable, suitable sensitivity and speed, which may have great application in terahertz detection.
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献