Low switching loss and increased short-circuit capability split-gate SiC trench MOSFET with p-type pillar

Author:

Shen Pei,Wang Ying,Li Xing-Ji,Yang Jian-Qun,Cao Fei

Abstract

A split-gate SiC trench gate MOSFET with stepped thick oxide, source-connected split-gate (SG), and p-type pillar (p-pillar) surrounded thick oxide shielding region (GSDP-TMOS) is investigated by Silvaco TCAD simulations. The source-connected SG region and p-pillar shielding region are introduced to form an effective two-level shielding, which reduces the specific gate–drain charge (Q gd,sp) and the saturation current, thus reducing the switching loss and increasing the short-circuit capability. The thick oxide that surrounds a p-pillar shielding region efficiently protects gate oxide from being damaged by peaked electric field, thereby increasing the breakdown voltage (BV). Additionally, because of the high concentration in the n-type drift region, the electrons diffuse rapidly and the specific on-resistance (R on,sp) becomes smaller. In the end, comparing with the bottom p+ shielded trench MOSFET (GP-TMOS), the Baliga figure of merit (BFOM, BV 2/R on,sp) is increased by 169.6%, and the high-frequency figure of merit (HF-FOM, R on,sp × Q gd,sp) is improved by 310%, respectively.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3