Tribology at the atomic scale with density functional theory

Author:

Ustunel HandeORCID,Toffoli DanieleORCID

Abstract

Abstract Understanding the quantum mechanical origins of friction forces has become increasingly important in the past decades with the advent of nanotechnology. At the nanometer scale, the universal Amontons–Coulomb laws cease to be valid and each interface requires individual scrutiny. Furthermore, measurements required to understand friction at the atomic scale are riddled with artificial factors such as the properties of the friction force microscope, effect of the environment, and the type of the substrate. It therefore proves difficult to isolate the actual behavior of interfaces from these effects. Electronic structure methods are an indispensable tool in understanding the details of interfaces, their interactions with lubricants, the environment and the support. In particular, density functional theory (DFT) has given large contributions to the field through accurate calculations of important properties such as the potential energy surfaces, shear strengths, adsorption of lubricant materials and the effect of the substrate. Although unable to tackle velocity- or temperature-dependent properties for which classical molecular dynamics is employed, DFT provides an affordable yet accurate means of understanding the quantum mechanical origins of the tribological behavior of interfaces in a parameter-free manner. This review attempts to give an overview of the ever-increasing literature on the use of DFT in the field of tribology. We start by summarizing the rich history of theoretical work on dry friction. We then identify the figures-of-merit which can be calculated using DFT. We follow by a summary of bulk interfaces and how to reduce friction via passivation and lubricants. The following section, namely friction involving two-dimensional materials is the focus of our review since these materials have gained increasing traction in the field thanks to the advanced manufacturing and manipulation techniques developed. Our review concludes with a brief touch on other interesting examples from DFT tribology literature such as rolling friction and the effect of photoexcitation in tribology.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

IOP Publishing

Subject

Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3