In search of Pca21 phase ferroelectrics

Author:

Mao Ge-Qi,Yuan Jun-Hui,Xue Kan-HaoORCID,Huang Jinhai,Yang ShengxinORCID,Miao XiangshuiORCID

Abstract

Abstract In recent years, hafnia-based ferroelectrics have attracted enormous attention due to their capability of maintaining ferroelectricity below 10 nm thickness and excellent compatibility with microelectronics flow lines. However, the physical origin of their ferroelectricity is still not fully clear, although it is commonly attributed to a polar Pca21 orthorhombic phase. The high-temperature paraelectric phases (the tetragonal phase or the cubic phase) do not possess a soft mode at the Brillouin zone center, thus the ferroelectric distortion has to be explained in terms of trilinear coupling among three phonon modes in the tetragonal phase. It is necessary to explore new materials with possible ferroelectricity due to the polar Pca21 phase, which in turn should be very helpful in evaluating the microscopic theory for ferroelectric hafnia. In this work, based on the idea of the Materials Genome Engineering, a series of hafnia-like ferroelectrics have been found, exemplified by LaSeCl, LaSeBr, LuOF and YOF, which possess adequate spontaneous polarization values and also relatively favorable free energies for the polar phase. Their common features and individual differences are discussed in detail. In particular, a promising potential ferroelectric material, Pca21 phase LuOF, is predicted and recommended for further experimental synthesis and investigation.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3